This is an interesting plor to compare variables in a lot of researches.
mpg
# A tibble: 234 × 11
manuf…¹ model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
1 audi a4 1.8 1999 4 auto… f 18 29 p comp…
2 audi a4 1.8 1999 4 manu… f 21 29 p comp…
3 audi a4 2 2008 4 manu… f 20 31 p comp…
4 audi a4 2 2008 4 auto… f 21 30 p comp…
5 audi a4 2.8 1999 6 auto… f 16 26 p comp…
6 audi a4 2.8 1999 6 manu… f 18 26 p comp…
7 audi a4 3.1 2008 6 auto… f 18 27 p comp…
8 audi a4 q… 1.8 1999 4 manu… 4 18 26 p comp…
9 audi a4 q… 1.8 1999 4 auto… 4 16 25 p comp…
10 audi a4 q… 2 2008 4 manu… 4 20 28 p comp…
# … with 224 more rows, and abbreviated variable name ¹manufacturer
vehicle_summary_tbl = mpg %>%
select(class, where(is.numeric), -year) %>%
# Median values by vehicle class
group_by(class) %>%
summarise(
across(displ:hwy, .fns = median)
) %>%
ungroup() %>%
# Prep for ggradar (make sure to scale to 0-1)
rename(group = class) %>%
mutate_at(vars(-group), rescale)
vehicle_summary_tbl
# A tibble: 7 × 5
group displ cyl cty hwy
<chr> <dbl> <dbl> <dbl> <dbl>
1 2seater 1 1 0.286 0.8
2 compact 0 0 1 1
3 midsize 0.150 0.5 0.714 1
4 minivan 0.275 0.5 0.429 0.6
5 pickup 0.625 1 0 0
6 subcompact 0 0 0.857 0.9
7 suv 0.612 1 0 0.05
vehicle_summary_tbl %>%
ggradar(
group.colours = palette_light() %>%
unname(),
plot.title = "MPG Comparison By Vehicle Class"
)
vehicle_summary_tbl %>%
ggradar() +
# Facet
facet_wrap(~ group, ncol = 3) +
# Theme
theme_void() +
scale_color_tq() +
theme(
strip.text = element_text(
size = 12,
colour = "white",
margin = margin(t = 5, b = 5)
),
strip.background = element_rect(fill = "#2C3E50"),
legend.position = "none"
) +
#Title
labs(title = "MPG Comparison By Vehicle Class")
vehicle_similarity_tbl = vehicle_summary_tbl %>%
#Transpose
pivot_longer(cols = -1) %>%
pivot_wider(
names_from = group,
values_from = value
) %>%
# Correlate and Arrange
corrr::correlate() %>%
mutate(across(where(is.numeric), .fns = ~replace_na(., 1))) %>%
arrange(`2seater`)
vehicle_similarity_tbl
# A tibble: 7 × 8
term `2seater` compact midsize minivan pickup subcomp…¹ suv
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 compact -0.783 1 0.857 0.535 -0.951 0.999 -0.943
2 subcompact -0.761 0.999 0.868 0.553 -0.950 1 -0.941
3 midsize -0.468 0.857 1 0.894 -0.691 0.868 -0.663
4 minivan -0.100 0.535 0.894 1 -0.301 0.553 -0.261
5 pickup 0.744 -0.951 -0.691 -0.301 1 -0.950 0.999
6 suv 0.764 -0.943 -0.663 -0.261 0.999 -0.941 1
7 2seater 1 -0.783 -0.468 -0.100 0.744 -0.761 0.764
# … with abbreviated variable name ¹subcompact
vehicle_summary_tbl %>%
mutate(group = factor(group, levels = vehicle_similarity_tbl$term)) %>%
ggradar()+
facet_wrap(~group, ncol = 3)+
scale_color_tq()+
labs(title = "Vehicle Classes Arranged By Similarity") +
theme(
legend.position = "none",
strip.background = element_rect(fill = "#2C3E50"),
strip.text = element_text(color = "white")
)
# A tibble: 3 × 11
group Acidez Aroma Balance Cuerpo Dulzura General Limpi…¹ Regusto
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Espesor… 1 0 0.5 1 0.5 1 0.5 1
2 Espesor… 0 0.500 0.5 1 0.5 1 0.5 0
3 Espesor… 1 1 0.5 0 0.5 0 0.5 1
# … with 2 more variables: Sabor <dbl>, Uniformidad <dbl>, and
# abbreviated variable name ¹Limpieza_Taza
For attribution, please cite this work as
Santos (2022, Oct. 15). Franklin Santos: Radar Plot. Retrieved from https://franklinsantos.com/posts/2022-10-23-ggradarplot/
BibTeX citation
@misc{santos2022radar, author = {Santos, Franklin}, title = {Franklin Santos: Radar Plot}, url = {https://franklinsantos.com/posts/2022-10-23-ggradarplot/}, year = {2022} }